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Chemotaxis in Escherichia coli analysed
by Three-dimensional Tracking
HOWARD C. BERG & DOUGLAS A. BROWN

Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80302

Chemotaxis toward amino-acids results
from the suppression of directional
changes which occur spontaneously in
isotropic solutions.

Ir a capillary tube containing an attractant is inserted into a
suspension of motile bacteria, the bacteria accumulate near
the mouth where the concentration of attractant is relatively
high. Pfeffer! introduced this technique as an assay for chemo-
taxis in 1884. In 1901, Rothert? and Jennings and Crosby?
noted that bacteria often swam past the capillary but returned
after failing to enter regions of much lower concentration.
It is now generally thought that chemotactic bacteria actively
avoid regions of lower concentration by backing up or by
choosing new directions at random*-5. This is not obvious in
Escherichia coli, since these bacteria repeatedly change their
directions even in the absence of an applied stimulus.

To study this motion in detail, we built a microscope which
automatically follows individual cells®. We have used this on
mutants of E. coli K127: a wild type®, a nonchemotactic
mutant®, an uncoordinated mutant®, a mutant defective in
taxis toward serine!?:!! and a mutant defective in taxis toward
aspartate'!, The results which we describe here demonstrate
that the response to serine and aspartate at concentrations of
order 10-° M is not an avoidance response; when cells swim
down gradients of these amino-acids their motion is indis-
tinguishable from that in isotropic solutions; when they swim
up the gradients they change direction less frequently.

In another communication!? we discuss a solution to the
diffusion equation which allows us to compute the concentra-
tion of attractant outside the mouth of a capillary, and, thus,
to follow cells in defined gradients.

Motion in Isotropic Solutions

The motion appears as an alternating sequence of intervals
during which changes in direction are gradual or abrupt—we
call these “runs” and “twiddles”, respectively. Genetic and
environmental differences in behaviour are associated chiefly
with the lengths of runs. Fig. 1 illustrates this for the wild type
and a nonchemotactic mutant. A number of results of a
quantitative run-twiddle analysis are given in Table 1.

Runs are long in cheC 497, short in unc 602, and of inter-
mediate length in AW405 (Table 1). Mutants able to respond
to a restricted set of attractants swim much like the wild type;
the motion of the serine-blind mutant AW518 is essentially
identical to that of AW405; the aspartate-blind mutant AW539
has somewhat shorter twiddles and somewhat longer runs

(0.11 £0.18 s and 1.3+ 2.1 s, respectively). The speed is nearly
uniform during runs, but the bacteria slow down or stop on
twiddling (Fig. 2). The mean change in direction from the end
of one run to the beginning of the next is less than 90° (Table 1).
If the bacteria chose a new direction at random, the probability
of an angle change between 6 and 9+ d6 would be 1/2 sin6 d6,
the mean value of 8 would be 90°, and the standard deviation
would be 39.2°. The distribution observed, however, is skewed
toward small angles (Fig. 3). If changesindirection were random,
the skew would be toward large angles because the digital

Table 1 Run-twiddle Analysis of Mutants Swimming in 2 Homo-
geneous, Isotropic Medium

Strain AW405 Unc 602 CheC497
Type Wild type Uncoordin- Nonchemo-
ated tactic

Number of bacteria tracked 35* 10 14
Total tracking time (min) 20 3.0 2.7
Mean speed (um/s) T 14.2+34 i4.4+3.9 20.0+4.9
Mean twiddlelength (s)f  0.14+0.19 0.14+0.24 0.10+0.13
Mean run length (s) 0.86+1.18 0.42+0.27 6.3+5.2
Mean change in direction

from run to run (°) 68 +36 74+ 33 33+15
Mean change in direction

during runs (°) 23+23 18423 35+22
Mean angular speed while

twiddling (°/word)§ 56+ 29 54+27 41432
Mean angular speed while

running (°/word)§ 1449 19+9 9+6

Data points (words) were generated at the rate of 12.6 per second.
The beginning of a run was scored if the angular speed § was less than
35°/word for three successive words. The end of a run was scored
if the angular speed was greater than 35°/word for two successive
words or if it was greater than 35°/word for one word, provided, in
the latter case, that the change in the average direction between
successive pairs of words was also greater than 35°. The angular
speed is sensitive to short term fluctuations in the data. These
depend on the ways in which the bacteria wobble and on the time
constants (0.08 s) of the circuits which precede the analogue-to-digital
converter. The time constants, the recording rate and the value 35°/
word were chosen empirically by comparing results of digital analyses
with plots of the kind shown in Fig. 1.

* Experiments done with three different cultures.

+ The values are the meanstone standard deviation. In the
calculation of the mean speed the mean for each bacterium is wel_ghted
equally, and the standard deviation is the standard deviation in the
mean.

1 In this and in subsequent entries in the table each twiddle or run
is weighted equally; the standard deviations are of the same order of
magnitude as those found with a single bacterium.

§ The angular speed is the change in the direction of motion from
one word (data point) to the next.
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Fig. 1 Digital plots of the displacement of a wild type bacterium, AW405, and a generally nonchemotactic mutant, che C 497, at the rate of
12.6 words (data points) per second. Tracking began at the points indicated by the large dots. The plots are planar projections of three-
dimensional paths. If the left and upper panels of each figure are folded out of the page along the dashed lines, the projections appear in
proper orientation on three adjacent faces of a cube. The cultures were grown in a minimal salts medium on glycerol, threonine, leucine,

and histidine, as described by Hazelbauer et al.'®.

They were washed twice at 4° C with a solution containing 10— M sodium phosphate

(pH 7.0), 10+ M EDTA (ethylenediamine tetraacetate) and 10~ M magnesium sulphate and diluted at room temperature to an optical

density of 0.01 (590 nm) in a solution containing 10-2 M sodium phosphate (pH 7.0), 10-* M EDTA, and 0.18 %, (w/v) hydroxypropyl methyl-

cellulose (Dow Methocel 90 HG). They were tracked as such atd 32.0° (vi;cc;fity 2.7 ¢p) in a tantalum and glass chamber 2 mm in diameter
and 2 mm high.

analysis ignores the smallest changes (Table 1, legend). Changes
in direction also occur during runs (Table 1). The drift is about
what one would expect from rotational diffusion: the root-
mean-square angular deviation of a 2 um diameter sphere
occurring in ¢ sec in a medium of viscosity 2.7 cp at 32° Cis 29
4/t degrees.
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Fig.2 The speed of the wild type bacterium of Fig. 1 displayed
by an analogue monitor. The recording has been divided into
three parts, each 9.8 s long; the figure should be read from left
to right and top down. Twiddles occurred during the intervals
indicated by the bars. Note the consequent changes in speed.
The longest run can be seen at the left end of the bottom trace.
It appears in the upper panel of Fig. 1 angling downwards and
slightly to the left, five runs from the end of the track. It is 45
words or 3.57 s long.

The shortest twiddles and the shortest runs are the most
probable (Fig. 4). The distribution of twiddle lengths is
exponential (Fig. 4a). The distribution of run lengths is
exponential for unc 602 (not shown) but only approximately
so for AW405 (Fig. 4b). If for AW40S one allows for variations
in mean run length for different bacteria, the curvature in the
semi-log plot of the aggregate run-length data vanishes (Fig. 4c).

From calculations of autocorrelation functions of sequences of
twiddles and of sequences of runs we conclude that twiddles
and runs of different length occur at random. The statistics are
Poisson; for a given organism in a given isotropic environment
the probability per unit time of the termination of a twiddle or
the termination of a run is a constant.

The wild type is known to have chemoreceptors for serine,
for aspartate and for a number of sugars’. If serine is added to
suspensions of AW405 (no gradients), the run-length dis-
tributions remain exponential but shift dramatically toward
longer runs (Fig. 5); the twiddles are suppressed. Calcula-
tions of the autocorrelation functions indicate that runs of
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Fig. 3 Distribution of changes in direction from the end of one

run to the beginning of the next for the wild type bacteria of

Table 1. The distribution was constructed from 1,166 events by

summing the numbers falling in successive 10° intervals. If the

analysis is confined to the shortest twiddles, the distribution is

skewed even farther toward small angles (mean and standard
deviation 62+ 26°).
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different length still occur at random. The shift does not occur
with aspartate (Fig. 5), even though the chemotactic responses to
aspartate and serine are nearly the same'®''. The shift due
to serine involves the serine chemoreceptor; it does not occur
in the serine-blind mutant AWS518. The shift is not a metabolic
effect, since it can be generated by a non-metabolite sensed
by the serine chemoreceptor (experiment done with a-amino-
isobutyric acid'! and the aspartate-blind mutant AWS539,
which also shows the shift with serine). It does not occur in
the uncoordinated mutant unc 602. Adler” notes that “serine
slightly inhibits chemotaxis toward all other attractants, and
this inhibition remains unexplained”. If chemotaxis results
from the suppression of twiddles (see below), serine should
inhibit chemotaxis generally, provided that the mutants tested
have a functional serine receptor.
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Fig. 4 Top: the fractional number of twiddles (a) or runs (b)
of different lengths for the wild type bacteria of Table 1. There
were 1,201 twiddles and runs. All the twiddles are plotted, but
runs longer than 5 s are not (lengths 5.1, 5.4, 6.0, 6.4, 7.0, 7.1,
7.1,7.2,7.9,7.9,7.9,12.9and 24.2s). Bottom: thesame data plotted
as the logarithm of the fractional number of twiddles (a) or
runs (b) of length greater than a given length*3. Curve ¢ was
obtained by scaling the run lengths of each bacterium so that its
mean run length was equal to the ensemble mean.

Serine has other effects on the motion of the wild type
which are less dramatic but which have a similar concentration
dependence. The mean speed increases by about 40%; the
mean twiddle length, the mean change in direction from run
to run, and the mean angular speed while running all decrease
by about 40%,. With aspartate there is a slight increase in
speed, but the other changes are not significant.

Motion in Gradients

Gradients were generated by diffusion of attractants from
capillary tubes of the kind used by Adler’, which we inserted
through a flat side wall of the tracking chamber. In preliminary
experiments we found the response (the number of bacteria
entering a capillary in 1 h) to be negligible when bacteria
were used at an optical density of 0.1 (590 nm; about 108
bacteria/ml.); the clouds of bacteria which accumulated near
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the mouths of the capillaries sank. At optical densities of
order 0.01 the response to an attractant was proportional to
the optical density, and the dependence on the concentration of
the attractant was similar to that described by Adler”>!'!
(experiments at 32° with serine, aspartate, a-amino-isobutyric
acid and a-methyl-pDL-aspartate, all in tracking medium).

Table 2 Run-twiddle Analysis of the Wild Type Swimming in Gradients

Attractant Serine Aspartate
Control  Gradient Control Gradient

Number of bacteria

tracked 11 34 23 24

Total tracking time

(min) 7.1 14.8 11.1 11.0

Meanrunlength(s) 0.83+0.88 1.67+2.56 0.83+0.90 0.90+1.56

Mean concentration of

attractant (UM) 0 9.5+2.7 10 8.4+2.0
Mean distance from

mouth of capillary

(uM) — 577+112 — 644 + 88
Mean value of

@Cjor)|C(mm-~1) — 2.5+0.4 — 24+04

The cells were prepared as described in the legend of Fig. 1, except
that the suspension used for the aspartate control also contained
10-3 M aspartate. Capillaries were used in the gradient experiments
but not in the controls. For each data point we computed the
distance from the mouth of the capillary to the bacterium being
tracked (r), the angle between the direction of motion of the
bacterium and the gradient (the “inclination”, 0° for motion radially
down the gradient), the concentration of the attractant at the
bacterium (C, as defined by equation (4), ref. 12, with r.=0.01 cm,
Co=2.0%10"2 M, Dyerine=1.0%x10~% cm?/s and Dospartare=0.89 %
10-% cm?/s), the steepness of the gradient at the bacterium (3C/or),
the time rate of change of the concentration at the bacterium (dC/d¢),
and the logarithmic derivatives (2C/9r)/C and (dC/dz)/C.

Mean speeds, twiddle lengths, changes in direction and angular
speeds are not shown; the values are essentially identical to those
for AW405 (Table 1).

Results of the run-twiddle analysis for the gradient experi-
ments are given in Tables 2 and 3. Runs are longer in the
gradients (Table 2) than we would expect from the concentra-
tion dependence (Fig. 5). This is true for runs which move the
bacteria up the gradient but not for runs which move them
down the gradient (Table 3). The differences in the up-gradient
and down-gradient data are dramatic when the run-length
distributions are examined (Fig. 6). For serine, the distri-

) (9% =
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Fractional change in run length

§

Amino-acid molarity

Fig. 5 Changes in mean run length caused by serine (@) or
asparfate (O). The bacteria (AW405) were diluted in the
tracking medium (Fig. 1, legend) to an absorbance of 0.02
(590 nm). Aliquots of this suspension were mixed with equal
volumes of tracking medium containing L-serine or L-aspartate
(Calbiochem A grade). Controls were made by omitting the
amino-acids. The ratios of the mean run lengths observed in the
presence and in the absence of the amino-acid are plotted as a
function of concentration.
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bution of runs down the gradient (Fig. 6b) is similar to the
distribution in a 9 uM isotropic solution; for aspartate, it is
indistinguishable from the control. From the data of Fig. 6
and from calculations of autocorrelation functions of sequences
of runs (not separated into subsets), we conclude that the
statistics are still Poisson. When a bacterium moves up the
gradient the probability per unit time of the termination of a
run decreases; when it moves down the gradient the proba-
bility reverts to the value appropriate to an isotropic solution
of similar concentration. At the concentrations we have
studied, the stimulus is sensed and acted on only when the
bacterium swims up the gradient.
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Fig. 6 The data from the serine (top) and the aspartate

(bottom) experiments (Tables 2 and 3) plotted as the logarithm

of the fractional number of runs of length greater than a given

length. a, Runs in the control experiment; b, runs down the
gradient; ¢, runs up the gradient.

Further proof of the assertion that motion away from the
capillary is not sensed can be obtained from computation by
linear regression'* of the correlation between the length of a
run and the mean value over the run of dC/dy, (dC/dt)/C,
—aC/ar, or —(9C/dr)]C. These correlations are all positive
(correlation coefficients of order 0.12+0.02). If the analysis is
confined to runs which move the bacteria up the gradient, the
correlation coefficients are larger (of order 0.19+0.03); if it is
confined to runs which move the bacteria down the gradient,
the coefficients are statistically insignificant (—0.02+0.02).
This implies that when the bacterium swims down the gradient
there is no functional relationship between the length of a run
and the derivatives of the concentration with respect to space
or time. This is true both for serine and aspartate.

There is nothing in our data to suggest that the bacteria are
able to steer in the direction of the gradient while running or
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that the motion is topotactic*. When they twiddle, the change
in direction is still biased toward small angles, as in Fig. 3,
but the angle chosen does not depend on the direction of the
gradient; there is no correlation between the inclination at
the end of a run (Table 2, legend) and the change in direction
from run to run. Nor is there any correlation between the
length of the run and the change in direction.

Table 3 Analysis of Runs which Move the Bacteria Up the Gradient
or Down the Gradient

Attractant Serine Serine  Aspartate Aspartate
Net displacement of runs Up Down Up Down
Mean concentration

(uM) 10.0+2.8 92+26 88%+19 8.1+1.9
Meanrunlength(s) 2.19+3.43 1.40+1.88 1.07+1.80 0.80+1.38
Mean run length

expected from the

control run length,

(Table 2) and the

concentration

dependence (Fig. 5) (s) 1.48 1.45 0.82 0.82

The runs of the gradient experiments (Table 2) divided into two
subsets according to whether the net displacement of a run is toward
or away from the mouth of the capillary (up-gradient or down-
gradient). The mean speed was only slightly larger for runs up the
gradient than for runs down the gradient (29 for serine, 79, for
aspartate).

An accurate calculation of the mean rates at which the bacteria
drift up the gradients could be made from the information in
Tables 2 and 3 if we knew the functional dependence of the
mean run lengths (for runs up the gradient) on inclination;
the data at hand are inadequate. If we assume that the run-
length bias is proportional to cos 6 (90° <0< 180°), the drift
rate in serine is about 2.0 pm/s, and the drift rate in aspartate
is about 0.9 pm/s. The value for serine is in rough agreement
with that obtained by Dahlquist, Lovely and Koshland*? for
suspensions of Salmonella in exponential gradients of com-
parable steepness.

Mechanisms

When a bacterium runs, its flagellar filaments work together
in a bundle of the kind photographed in E. coli by Ramsey
and Adler (Ramsey, S. W., and Adler, J., private communi-
cation), or in Salmonella by Mitani and Iino'®. When it
twiddles the bundle probably loosens or comes apart. When
the bundle re-forms, the cell goes off in a new direction. The
direction chosen depends on the change in orientation of the
bundle relative to the body of the cell. Smaller changes in
direction require smaller changes in orientation and occur in
shorter periods of time (Fig. 3). The stability of the bundle is
improved by interaction with chemoreceptors. The association
of an attractant with a receptor increases the stability even
more. If the attractant is serine, the stability of the bundle is
affected by both the average level of association (Fig. 5) and
the rate at which it increases (Fig. 6). If it is aspartate, only the
rate of increase is important (Fig. 6).

We do not know what the molecular structure of the twiddle
generator is or how it is able to perturb the flagellar bundle.
We do know it operates on Poisson statistics (Fig. 4) and that
its firing rate can be suppressed by chemoreception. It is likely
that the generator is built from elements which are missing or
defective in generally nonchemotactic mutants. When the
generator and the chemoreceptors are uncoupled, the generator
runs free, and the mutants are uncoordinated.

We thank Julius Adler and Margaret Dahl for mutants and
instruction in their handling. Pfeffer assays were done by
Susan MacFadden. This research was supported by grants
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Random Packing of Equal and Unequal
Spheres in Two and Three

Dimensions

WILLIAM M. VISSCHER & M. BOLSTERLI

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

A new computer simulation of random
packing of spheres is applied to two-
and three-dimensional problems with a
uni-directional gravitational force.

THE ramifications of the sphere packing problem are multi-
farious. They are found, for example, in metallurgy, ceramics,
soil science, biology, physics, chemistry, and many fields of
engineering. The problem may be stated as follows: given
spheres with radii distributed according to a prescribed
probability density, and given that they are packed together
randomly by some rule to be specified, what is the nature of the
resultant heap? Density, average number of contacts, radial
distribution function, and size distribution of interstices are a
few of the guantities which have obvious importance in the
fields mentioned above and which have been calculated or
measured experimentally.

We approach the problem of random packing of spheres by
means of a Monte Carlo computer simulation of the physical
process of dropping spheres into a bin. Our packing rule differs
from previous ones!? in that our spheres position themselves
under the influence of a unidirectional (vertical) gravitational
force, rather than toward a centre of attraction.

The computer code in three dimensions is set up as follows:
In order to avoid difficulties with the sides of an array, periodic
horizontal boundaries are assumed, so that a ball at (x, y, 2)
reappears at (x+ L,,y+ L,,z). Balls are dropped sequentially
from a random point above the L, x L, bin. When a ball is
dropped it hits ball m or the floor. If it has contacted ball m,
it then rolls down in a vertical plane on m until it is in contact
with m and #. Then it rolls downwards in contact with both m
and » until it makes contact with p. If the contact with m, n,

and p is stable, it stops. If not, it rolls on the double contact
that goes down most steeply, and so on. Any time a bail
contacts the floor, it stops.

In two dimensions the code is similar but simpler in that only
the discs in the top layer need be checked for hits or contacts.

New features of our calculation include domain structure in
2d random packing, computer simulation of jiggling the
container, the effect of machining errors on the buildup of a
regular hexagonal close packed (h.c.p.) array of balls, densities
of binary random mixtures of spheres in 2d and 3d, and
simulation of shape irregularities, interparticle attractions or
stickiness.

Two-dimensional Calculations:
Buildup of Heaps of Hoops

The 2d simulation code has been used to build stacks of
discs. An example of a binary mixture is shown in Fig. 1. The
discs were dropped from random points above the periodic
baseline.

Fig. 2 shows an array of discs, monosize except for the
bottom layer, which is chosen from a uniform random distri-
bution of radii between R=1.0+0.2. This uneven base causes
the structure to look quite random for a while, but soon order
reappears in the form of domains of nearly square structure,
tipped at about 45° from the vertical. These domains are of the
order of 8 or 10 discs on a side, and fill most of the stack.
The same kind of domain also appears if the array is started
with a row of uniform discs with subsequent discs randomly
chosen from a uniform distribution with a very small spread
like R=1+%x10-%; the smaller the spread the longer the
regular hexagonal structure persists. (In the following we call
this the fuzzy monosize distribution with spread 10-°.)

These results contrast with those obtained by Kausch et al.?
who found that ordered domains will form spontaneously, but
that the ordered domains constituted only a small fraction of
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